New Quantum Computer Interface Transfers Qubits From Atom to Photon

First Posted: Feb 07, 2013 05:05 PM EST

Progress towards creating the "quantum internet" and generally quantum computing was made by University of Innsbruck researchers managing to create an interface that enables a direct transfer of the quantum information stored in an atom onto a particle of light for the first time.

One of the most promising technologies for the construction of quantum computers, which would be able to carry out certain computational tasks much faster than conventional computers due to the strange laws of quantum mechanics, are currently systems of single atoms, confined in ion traps and manipulated with lasers.

In the laboratory, these systems are already being used to test key building blocks of a future quantum computer. "Currently, we can carry out successful quantum computations with atoms," explain Andreas Stute and Bernardo Casabone, both PhD students at the University of Innsbruck's Institute for Experimental Physics.

"But we are still missing viable interfaces with which quantum information can be transferred over optical channels from one computer to another."

What makes the construction of these interfaces quite difficult is that the laws of quantum mechanics don't allow quantum information to be simply copied. Instead, a future quantum internet - that is, a network of quantum computers linked by optical channels - would have to transfer quantum information onto individual particles of light, known as photons.

These photons can then be transported over an optical-fiber link to a distant computing site.

The research team led by Tracy Northup and Rainer Blatt, who published their work in the current issue of Nature Photonics, first trap a single calcium ion in an ion trap and position it between two highly reflective mirrors. "We use a laser to write the desired quantum information onto the electronic states of the atom," explains Stute. "The atom is then excited with a second laser, and as a result, it emits a photon.

At this moment, we write the atom's quantum information onto the polarization state of the photon, thus mapping it onto the light particle." The photon is stored between the mirrors until it eventually flies out through one mirror, which is less reflective than the other.

"The two mirrors steer the photon in a specific direction, effectively guiding it into an optical fiber," says Casabone. The quantum information stored in the photon could thus be conveyed over the optical fiber to a distant quantum computer, where the same technique could be applied in reverse to write it back onto an atom.

Funding was provided by the Austrian Science Funds and by the European Union.

A. Stute et al., Quantum-state transfer from an ion to a photon, Nature Photonics, 2013, DOI: 10.1038/nphoton.2012.358

See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone

©2017 All rights reserved. Do not reproduce without permission. The window to the world of science news.

Join the Conversation

Real Time Analytics