Giant Black Hole at Galactic Core is Peaceful, Devours Only 1% of Captured Matter

First Posted: Aug 29, 2013 04:41 PM EDT
Close

The giant black hole at the center of our Milky Way Galaxy devours its surrounding mass at a quite low rate of only 1% of all the gas initially within its gravitational grasp. This is according to new images by NASA's Chandra X-ray Observatory of Sagittarius A* (Sgr A*), which is located about 26,000 light-years from Earth. Astronomers say that the extraordinarily faint X-ray emissions of material surrounding the giant black hole can be explained by the hypothesis that less than 1% of it ever reaches the point of no return, also called the event horizon. Instead, much of the gas is ejected before it gets near the event horizon and has a chance to brighten, leading to the observed feeble X-ray emissions.

These new findings are the result of one of the longest observation campaigns ever performed with Chandra. The spacecraft collected five weeks' worth of data on Sgr A* in 2012. The researchers used this observation period to capture unusually detailed and sensitive X-ray images and energy signatures of super-heated gas swirling around Sgr A*, whose mass is about 4 million times that of the sun.

"We think most large galaxies have a supermassive black hole at their center, but they are too far away for us to study how matter flows near it," said Q. Daniel Wang of the University of Massachusetts in Amherst, who led of a study published Thursday in the journal Science. "Sgr A* is one of very few black holes close enough for us to actually witness this process."

The researchers found that the Chandra data from Sgr A* did not support theoretical models in which the X-rays are emitted from a concentration of smaller stars around the black hole. Instead, the X-ray data show the gas near the black hole likely originates from winds produced by a disk-shaped distribution of young massive stars.

"This new Chandra image is one of the coolest I've ever seen," said co-author Sera Markoff of the University of Amsterdam in the Netherlands. "We're watching Sgr A* capture hot gas ejected by nearby stars, and funnel it in towards its event horizon."

To plunge over the event horizon, material captured by a black hole must lose heat and momentum. The ejection of matter allows this to occur.

"Most of the gas must be thrown out so that a small amount can reach the black hole", said Feng Yuan of Shanghai Astronomical Observatory in China, the study's co-author. "Contrary to what some people think, black holes do not actually devour everything that's pulled towards them. Sgr A* is apparently finding much of its food hard to swallow."

The gas available to Sgr A* is very diffuse and super-hot, so it is hard for the black hole to capture and swallow it. The gluttonous black holes that power quasars and produce huge amounts of radiation have gas reservoirs much cooler and denser than that of Sgr A*. -- NASA

See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone

©2017 ScienceWorldReport.com All rights reserved. Do not reproduce without permission. The window to the world of science news.

Join the Conversation

Real Time Analytics