How to Mine Asteroids: Learn From NASA's OSIRIS-REx Asteroid Mission

First Posted: Aug 09, 2013 09:39 PM EDT
Close

Over the last hundred years, the human population has exploded from about 1.5 billion to more than seven billion, driving an ever-increasing demand for resources.

To satisfy civilization's appetite, communities have expanded recycling efforts while mine operators must explore forbidding frontiers to seek out new deposits, opening mines miles underground or even at the bottom of the ocean.

Asteroids could one day be a vast new source of scarce material if the financial and technological obstacles can be overcome. Asteroids are lumps of metals, rock and dust, sometimes laced with ices and tar, which are the cosmic "leftovers" from the solar system's formation about 4.5 billion years ago. There are hundreds of thousands of them, ranging in size from a few yards to hundreds of miles across. Small asteroids are much more numerous than large ones, but even a little, house-sized asteroid should contain metals possibly worth millions of dollars.

There are different kinds of asteroids, and they are grouped into three classes from their spectral type - a classification based on an analysis of the light reflected off of their surfaces. Dark, carbon-rich, "C-type" asteroids have high abundances of water bound up as hydrated clay minerals. Although these asteroids currently have little economic value since water is so abundant on Earth, they will be extremely important if we decide we want to expand the human presence throughout the solar system.

"Water is a critical life-support item for a spacefaring civilization, and it takes a lot of energy to launch it into space," says Dante Lauretta of the University of Arizona, Tucson, principal investigator for NASA's OSIRIS-REx asteroid sample return mission. "With launch costs currently thousands of dollars per pound, you want to use water already available in space to reduce mission costs. The other thing you can do with water is break it apart into its constituent hydrogen and oxygen, and that becomes rocket fuel, so you could have fuel depots out there where you're mining these asteroids. The other thing C-type asteroids have is organic material - they have a lot of organic carbon, phosphorous and other key elements for fertilizer to grow your food," said Lauretta.

Somewhat brighter asteroids have a stony composition. These "S-type" asteroids have very little water but are currently more economically relevant since they contain a significant fraction of metal, mostly iron, nickel and cobalt.

"However, there are a fair amount of trace elements that are economically valuable like gold, platinum and rhodium," said Lauretta. "A small, 10-meter (yard) S-type asteroid contains about 1,433,000 pounds (650,000 kg) of metal, with about 110 pounds (50 kg) in the form of rare metals like platinum and gold," said Lauretta.

There are rare asteroids with about ten times more metal in them, the metallic or "M-class" asteroids, according to Lauretta.

However, it currently costs hundreds of millions to billions of dollars to build and launch a space mission, so innovations that would make these costs fall dramatically are needed before it is profitable to mine asteroids for the value of their metals alone.
Another obstacle is simply our lack of experience with mapping and analyzing the resources in asteroids to extract material from them. This critical experience will be gained with NASA's asteroid sample return mission, OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security and Regolith Explorer).

The spacecraft, scheduled for launch in September 2016, will arrive at the asteroid Bennu in October 2018 and study it in detail before returning with a sample of material from its surface. Its primary purpose is scientific -- since asteroids are relics from our solar system's formation, analysis of the sample is expected to give insights into how the planets formed and life originated. Also, the spacecraft will accurately measure how the tiny push from sunlight alters the orbit of Bennu, helping astronomers better predict this influence on the path of any asteroid that presents an impact risk to Earth.

"However, the mission will develop important technologies for asteroid exploration that will benefit anyone interested in exploring or mining asteroids, whether it's NASA or a private company," said Lauretta.

A good way to determine an asteroid's composition from a distance is to analyze its light. All materials reflect, emit, and absorb light at specific colors or frequencies depending on the properties of the material. The make-up of a material can be identified using special instruments called spectrometers which measure the intensity of light at different frequencies.

Materials emit and absorb light over an extremely wide range of frequencies, well beyond what our eyes can see, so OSIRIS-REx has three spectrometers that together cover this range in the X-ray, visible and infrared.

Although developed for science, the instruments on OSIRIS-REx are similar to those necessary for an asteroid mining mission.

"The mission will be a proof-of-concept - can you go to an asteroid, get material, and bring it back to Earth," said Lauretta. "Next, people will have to industrialize it so that the economy works out, so for the recoverable value in any given asteroid, you're spending half that to bring it back."

The University of Arizona, Tucson, is the principal investigator institution which leads the mission. NASA's Goddard Space Flight Center, Greenbelt, Md., provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space Systems is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. -- NASA

See Now: NASA's Juno Spacecraft's Rendezvous With Jupiter's Mammoth Cyclone

©2017 ScienceWorldReport.com All rights reserved. Do not reproduce without permission. The window to the world of science news.

Join the Conversation

Real Time Analytics