Updated Hot Tags air pollution Ebola high mission Reduce

Experience us with dark theme

sciencewr.com
Health & Medicine Scientists Are Developing Artificial Skin, Could Improve Prosthetic Limbs

Scientists Are Developing Artificial Skin, Could Improve Prosthetic Limbs

  • Text Size - +
  • Print
  • E-mail
First Posted: May 14, 2013 01:18 PM EDT
skin
Are you allergic to certain types of food? You may have a certain structural defect in your skin cells. Scientists have discovered that this defect can contribute to allergy development, including both skin and food allergies, that was typically thought to be a dysfunction of the immune system. (Photo : Microsoft)

A new study shows that scientists may actually be closer to creating artificial skin that is able to actually feel.

Like Us on Facebook

Researchers say that a sense of touch is important for developing robots that can navigate the world, and it could improve prosthetic limbs for amputees, as well. However, artificial human skin is remarkably difficult to engineer, and given that skin is sensitive to the lightest of touches.

According to study researcher Zhenan Bao, a professor of chemical engineering at Stanford University, the sensor is more sensitive to pressure than human skin.

"If you use your finger to touch your skin or hand, the pressure applied is in the kilopascal range," Bao said, according to LiveScience, referring to a unit of pressure. "Our sensor can detect pressure that is a few hundred times less than that gentle touch."

Bao and her colleagues have been working on electronics inspired by human skin for years. In 2010, they announced the development of an extra-sensitive pressure sensor made with ultrathin rubber. But that device didn't have a flexible transistor, which is thesemiconductor that transmits the signal from the sensor.

The new device is a transistor made of a flexible polymer semiconductor, Bao said.

"If we have a layer of rubber, and we apply pressure onto the rubber, the rubber will deform," she said. "And when it deforms, it will change the amount of charge it can store. These charges will impact the current flow into the transistor."

The sensor works even when curved, as around a body part. Bao and her colleagues tested their device on a man's wrist, and found they could take his pulse with more far more sensitivity than by laying fingers on his artery.

Fingers held to a pulse point can only detect the strongest push of blood through a vessel. The flexible sensor can also detect a second, weaker wave of blood being bounced back from the extremities, and a third wave that can provide a measurement of the stiffness of the artery. Stiff arteries can be a sign of damage from diabetes, or cholesterol buildup.

The next step for Bao and her co-researchers is to make the device wireless, and thus less cumbersome for continuous medical monitoring. Ultimately, she said, the goal is to enter sci-fi territory: building artificial skin that can sense and feel.

"To actually make artificial skin, we still need to be able to connect the sensors with neurosystems, so that the sensor signal can be transmitted to the human brain," Bao said. "That will be a big challenge."

Nevertheless, she said, the team is making progress. In 2011, they developed a stretchable touch sensor, and in 2012, they created a version that could self-heal from scratches.

"My students love 'Star Trek' and 'Iron Man,'" Bao said. "Those science fiction movies give them inspiration, and make us more innovative and creative."

The findings for the study can be found in a paper published May 14 in the journal Nature Communications. 

©2014 ScienceWorldReport.com All rights reserved. Do not reproduce without permission. The window to the world of science news.
Featured Video : Ninjas vs Superbugs: Adventures in Nanomedicine

Around the web

Join the Conversation

Space News

Health & Medicine News

Environment News

Stay
Connected
Subscribe to our newsletter